Matrix Inequalities Involving a Positive Linear Map
نویسنده
چکیده
Let A be a Hermitian matrix, let be a normalized positive linear map and let f be a continuous real valued function. Real constants and such that (f(A)) f(((A)) (f(A)) are determined. If f is matrix convex then can be taken to be 1. A uniied approach is proposed so that the problem of determining and is reduced to solving a single variable convex minimization problem. As an illustration, the results are applied to the power functions.
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملQuantum information inequalities via tracial positive linear maps
Abstract. We present some generalizations of quantum information inequalities involving tracial positive linear maps between C∗-algebras. Among several results, we establish a noncommutative Heisenberg uncertainty relation. More precisely, we show that if Φ : A → B is a tracial positive linear map between C∗-algebras , ρ ∈ A is a Φ-density element and A,B are self-adjoint operators of A such th...
متن کاملAn extension of the positive real lemma to descriptor systems
The well-known positive real lemma characterizes positive realness of transfer functions of timeinvariant linear systems via the solvability of certain linear matrix inequalities. In this paper, we propose an extension of the positive real lemma and the underlying linear matrix inequalities to descriptor systems. We show that the solvability of these linear matrix inequalities is sufficient and...
متن کاملBounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997